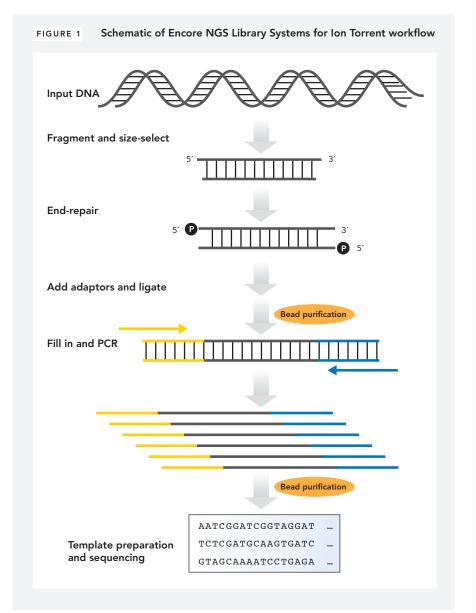
Encore[™] NGS Library Systems *for* Ion Torrent[™]

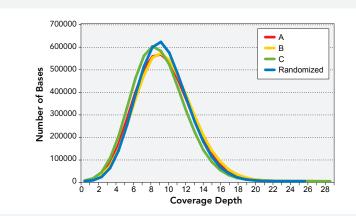
Simple, fast, and affordable preparation of DNA libraries for a wide range of next generation sequencing applications


Highlights of the Encore NGS Library Systems *for* Ion Torrent

- Simple, fast automatable workflow — Library construction in four hours from as little as 100 ng DNA, with only two bead purification steps. Library size selection is performed using magnetic beads, eliminating the need for specialized equipment or gels.
- A complete solution for a range of NGS applications — All required components to make libraries for genomic DNA/exome sequencing, amplicon sequencing, RNA-Seq, Digital Gene Expression (DGE), ChIP-Seq, etc., for the Ion PGM[™] System from Life Technologies[™]
- Affordable and scalable Optional barcoding capability for multiplex sequencing to improve sample throughput and reduce sequencing costs

Introduction

Recent advances in Next-Generation Sequencing (NGS) technology have increased both the throughput and capacity of sequencing platforms, calling for increased efficiency in sample preparation. The Encore NGS Library Systems for Ion Torrent address this need by providing simple, rapid and affordable methods to construct DNA libraries for all major NGS applications.



As shown in **Figure 1**, the workflow consists of four main steps: (1) Fragmented double-stranded DNA is size selected using an innovative, automation-friendly magnetic bead-based procedure to isolate fragments with a median size of 150 base pairs (bp); (2) The ends of these fragments are repaired to generate blunt ends; (3) Adaptor molecules are ligated, placing specific adaptors on the 5' and 3' end of each fragment; and (4 Fragments with ligated adaptors are generated by a fill-in reaction and simultaneous PCR amplification to produce the final library with the optional incorporation of barcodes for multiplex sequencing. The entire workflow can be completed in four hours and yields DNA libraries ready for template preparation on the Ion PGM System. The Encore NGS Multiplex Library Systems for Ion Torrent use unique barcodes to facilitate sequencing of up to sixteen samples on a single chip, thereby dramatically reducing the per sample cost and time required to obtain sequence data.

Sequencing Libraries Prepared with *E. coli* Genomic DNA

In order to evaluate the performance of the Encore NGS Library Systems for Ion Torrent, three independent sequencing libraries were constructed using 100 ng of *E. coli* genomic DNA and sequenced on the PGM. The distribution of reads from each sample was plotted to determine the depth of coverage across the *E. coli* genome, as well as to assess the reproducibility of library construction and sequencing. An average of 566,000 total reads was obtained for each sample and 430,000 of these were randomly

Three independent sequencing libraries were constructed using 100 ng of *E. coli* genomic DNA using the Encore NGS Library System for Ion Torrent and sequenced on the PGM (A, B, C). The distribution of reads from each sample is plotted to determine the depth of coverage across the *E. coli* genome. The average number of total reads obtained for each sample was 566,000. 430,000 reads were randomly sub-sampled from each data set to generate the above plots. These experimental tracks are shown in red, gold, and green. The theoretical distribution based on randomly chosen sequences with lengths that emulate 430,000 reads from sample A is shown in blue.

Library Summary					lon Sphere™ Particle (ISP) Identification Summary			
Based on Predicted Per-Bas	e Quality Sco	ores - Independe	nt of Alignr	nent				
Total Number of Bases [Mbp]	72	.55						
Number of Q17 Bases [Mbp]	44	.60						
Number of Q20 Bases [Mbp]	33	.69				Loading Density (Avg -	~ 78%)	100 %
Total Number of Reads	63	638,458					CONSTRUCT OF	PO %
Mean Length [bp]	11	114						90 %
Longest Read [bp]	20	1				1		70 %
12000 - Read Length Histo 12000	ogram	60 50 40 7 20 10 10	Consensus Key 1-Mer	- Library Ave, Neak - 56		4		50 % 80 % 80 % 20 % 20 % 3 %
00 S0 Bead Length	150			Flows			Count	Percent
						Total Addressable Wells	1.262.519	
Reference Genome Informat	tion					Total Addressable Wells Wells with ISPs	1,262,519	7
Reference Genome Informat Genome Name	Ε.	coli DH10B				Wells with ISPs	1,003,498	9
Genome Name Genome Size	E. 4,6	<i>coli DH10B</i> 586,137 bases				Wells with ISPs Live ISPs	1,003,498 930,853	9
Genome Name Genome Size Genome Version	<i>E.</i> 4,6 1	586,137 bases				Wells with ISPs Live ISPs Test Fragment ISPs	1,003,498 930,853 7,417	7 9 < 9
Genome Name Genome Size	<i>E.</i> 4,6 1					Wells with ISPs Live ISPs Test Fragment ISPs	1,003,498 930,853 7,417 923,436	9 < 9
Genome Name Genome Size Genome Version	<i>E.</i> 4,6 1 tm	586,137 bases ap-f2				Wells with SPs Live SPs Test Fragment SPs Library SPs	1,003,498 930,853 7,417 923,436 Count	9
Genome Name Genome Size Genome Version Index Version	E. 4,6 1 tm	586,137 bases ap-f2 ided Reference	4020	Perfect		Wells with ISPs Live ISPs Test Fragment ISPs	1,003,498 930,853 7,417 923,436	g g Percent
Genome Name Genome Size Genome Version Index Version Based on Full Library Alignm	E. 4,6 1 tm nent to Provi	586,137 bases ap-f2 ided Reference	AQ20	Perfect 36 93		Wells with SPs Live SPs Test Fragment SPs Library SPs	1,003,498 930,853 7,417 923,436 Count 923,436	9 < 9 Percent 9
Genome Name Genome Size Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp)	E. 4,6 1 tm nent to Provi AQ 51	586,137 bases ap-f2 ided Reference 217 / .47 4	12.48	36.93		Wells with SPs Live SPs Test Fragment SPs Library SPs Library SPs / Percent Enrichment Filtered: Too short	1,003,498 930,853 7,417 923,436 Count 923,436 19,356	g g Percent
Genome Name Genome Size Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp) Mean Length (bp)	E. 4,6 1 tm nent to Provi	586,137 bases ap-f2 ided Reference 217 4 .47 4				Wells with SPs Live SPs Test Fragment SPs Library SPs / Percent Enrichment Filtered: Too short Filtered: Keypass failure	1,003,498 930,853 7,417 923,436 Count 923,436 19,356 42,071	9 < 9 Percent 9
Genome Name Genome Size Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp)	E. 4,6 1 tm nent to Provi 51 94 16	586,137 bases ap-f2 ided Reference 117 / .47 / 7 1	42.48 85	36.93		Wells with SPs Live SPs Test Fragment ISPs Library ISPs Hibrary ISPs / Percent Enrichment Filtered: Too short Filtered: Keypass failure Filtered: Mixed / Polycional	1,003,498 930,853 7,417 923,436 Count 923,436 19,356 42,071 12,297	9 < 9 Percent
Genome Name Genome Size Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp) Mean Length (bp) Longest Alignment (bp)	E. 4,6 1 tm nent to Provi 61 94 16	586,137 bases ap-f2 et17 / / .47 / / 7 1 .00x 5	12.48 85 159	36.93 77 157		Wells with SPs Live SPs TestFragment SPs Library SPs / Percent Enrichment Filtered: Too short Filtered: Keypass falure Filtered: Kibed / Polycional Filtered: Lov Signal	1,003,498 930,853 7,417 923,436 923,436 19,356 42,071 12,297 14,326	Percent
Genome Name Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp) Mean Length (bp) Longest Alignment (bp) Mean Coverage Depth	E. 4,6 1 tm nent to Provi 61 94 16	586,137 bases ap-f2 etf7 / / .47 / / 7 1 .00x 5	42.48 85 159 9.10×	36.93 77 157 7.90×		Wells with SPs Live SPs Test Fragment SPs Library SPs / Percent Enrichment Filtered: Too short Filtered: Klued / Polyclonal Filtered: Klued / Polyclonal Filtered: Low Signal Filtered: Low Signal	1,003,498 930,853 7,417 923,436 19,356 42,071 12,297 14,326 174,595	Percent
Genome Name Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp) Mean Length (bp) Longest Alignment (bp) Mean Coverage Depth	E. 4,6 1 1 ment to Provi 51 94 16 11	586,137 bases ap-f2 etf7 / / .47 / / 7 1 .00x 5	42.48 85 159 9.10×	36.93 77 157 7.90×		Wells with SPs Live SPs Test Fragment SPs Library SPs / Percent Enrichment Filtered: Too short Filtered: Keypass failure Filtered: Kwed / Polycional Filtered: Low Signal Filtered: Poor Signal Profile Filtered: 3 Adapter trim	1,003,498 930,853 7,417 923,436 19,356 42,071 12,297 14,326 174,595 21,994	Percent
Genome Name Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp) Mean Length (bp) Longest Alignment (bp) Mean Coverage Depth Percentage of Library Covered Read Alignment Distribution	E. 4,6 1 1 ment to Provi 51 94 16 11 10	586,137 bases ap-f2 etf7 / / .47 / / 7 1 .00x 5	42.48 85 159 9.10×	36.93 77 157 7.90× 100%	matches	Wells with SPs Live SPs TestFragment SPs Library SPs / Percent Enrichment Filtered: Too short Filtered: Keypass falure Filtered: Keyd / Solyconal Filtered: Loo Signal Filtered: Joan Signal Filtered: Joan Signal Filtered: J Adapter trim Filtered: 3 Quality trim	1,003,498 930,853 7,417 923,436 923,436 19,356 42,071 12,297 14,326 174,595 21,994 0	Percent
Genome Name Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp) Mean Length (bp) Longest Alignment (bp) Mean Coverage Depth Percentage of Library Covered Read Alignment Distribution	E. 4,6 1 1 ment to Provi 51 94 16 11 10	s86,137 bases ap-f2 iided Reference 117 / .47 / .47 / .00x / 0% 1	42.48 85 9.10× 100%	36.93 77 157 7.90× 100%	matches 75,512	Wells with SPs Live SPs TestFragment SPs Library SPs / Percent Enrichment Filtered: Too short Filtered: Keypass falure Filtered: Keyd / Solyconal Filtered: Loo Signal Filtered: Joan Signal Filtered: Joan Signal Filtered: J Adapter trim Filtered: 3 Quality trim	1,003,498 930,853 7,417 923,436 923,436 19,356 42,071 12,297 14,326 174,595 21,994 0	Percent
Genome Name Genome Version Index Version Based on Full Library Alignm Total Number of Bases (Mbp) Mean Length (bp) Longest Alignment (bp) Mean Coverage Depth Percentage of Library Covered Read Alignment Distribution Read Length (bp) Reads.	E 4,6 1 tm nent to Provi 51 94 16 11 10 1 9 94 9 1 9 4 9 1 9 1 9 4 9 1 9 1 9 9 1 9 1	s86,137 bases ap-f2 117 // 47 // 7 // 00x // 0% // sxcluded Clipped	42.48 35 159 9.10× 100% <u>Perfect</u>	36.93 77 157 7.90× 100%		Wells with SPs Live SPs TestFragment SPs Library SPs / Percent Enrichment Filtered: Too short Filtered: Keypass falure Filtered: Keyd / Solyconal Filtered: Loo Signal Filtered: Joan Signal Filtered: Joan Signal Filtered: J Adapter trim Filtered: 3 Quality trim	1,003,498 930,853 7,417 923,436 923,436 19,356 42,071 12,297 14,326 174,595 21,994 0	9 9 Percent 9

FIGURE 3 Key technical matrices of a typical run using libraries generated with the Encore NGS Library System for Ion Torrent

FIGURE 2 Sequence coverage of E. coli genome

sub-sampled in line with the 4.7 million base pair *E. coli* reference genome.

As shown in **Figure 2**, the reads from each library (red, gold, and green trace) were mapped to the reference genome; the theoretical distribution based on randomly chosen sequences with lengths that emulate 430,000 reads from sample A is shown in blue. Mapping of these 430,000 reads provided an average coverage of 9X, with no positional bias or GC bias observed. These results demonstrate that DNA libraries constructed with the Encore NGS Library System for Ion Torrent provide sequence data with no bias in the positional mapping of reads.

Figure 3 shows the key technical matrices of a typical run using libraries generated with the Encore NGS Library Systems for Ion Torrent and sequenced using the Ion 314 Chip.

Sequencing Libraries Prepared from Low and High GC Genomic DNA

Genomes with low and high GC contents can present a challenge for library construction and subsequent sequencing. Duplicate sequencing libraries were constructed using genomic DNA isolated from *Staphylococcus aureus* (33% GC) and *Rhodobacter sphaeroides* (69% GC) with the Encore NGS Library System for Ion Torrent and sequenced on the PGM.

Figure 4 shows that the actual sequence coverage of these two genomes closely resembles the theoretical coverage, indicating no positional bias or GC bias in the resulting data. Table 1 shows that the GC contents and library coverage of the resulting sequences from *E. coli*, *S. aureus* and *R. sphaeroides* closely match the actual GC contents of the reference sequences.

Unique Barcodes to Enable Sample Multiplexing

In order to further enhance the efficiency and cost-effectiveness of the PGM, the Encore NGS Multiplex Library Systems for Ion Torrent are available with an optional barcoding feature to increase the number of samples that can be sequenced on a chip. The Encore NGS Multiplex Systems for Ion Torrent are supplied with a set of sixteen bar-

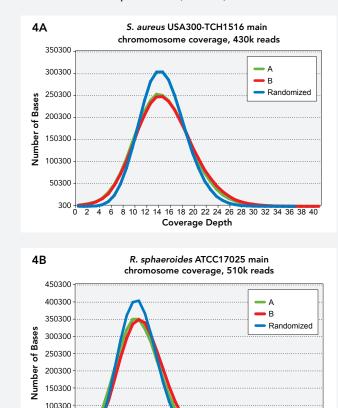


FIGURE 4 Sequence coverage of Staphylococcus aureus (33% GC) and Rhodobacter sphaeroides (69% GC).

Sequence coverage of *Staphylococcus aureus* (33% GC) and *Rhodobacter sphaeroides* (69% GC). Duplicate sequencing libraries were constructed using 100 ng of genomic DNA isolated from *S. aureus* and *R. sphaeroides* and the Encore NGS Library System for Ion Torrent and sequenced on the PGM. An average of 542,000 and 555,000 total reads was obtained for *S. aureus* and *R. sphaeroides*; 430,000 and 510,000 of the reads were randomly sub-sampled from each data set to generate the plots, figure 4A and 4B. These experimental tracks are shown in red and green. The theoretical distribution based on randomly chosen sequences with lengths that emulate the experimental reads from sample A is shown in blue.

Coverage Depth

8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

coded adaptors to facilitate multiplex sequencing. The barcodes are intrinsic to the first sequencing read and are designed to provide unbiased representation across all nucleotide bases in the inserts. The barcode sequences are unambiguous, meaning that sequencing errors or deletion errors do not corrupt the code integrity.

50300

300 |

2 4 6

As shown in **Figure 5**, use of the barcodes in an 8-plex sequencing experiment provides even read distribution, demonstrating unbiased representation from the barcoded libraries.

The Encore NGS Library Systems for Ion Torrent have been designed for seamless integration with the Ovation RNA-Seq System V2, the Ovation RNA-Seq FFPE System and the Ovation Prokaryotic RNA-Seq System to enable a complete end-to-end solution for transcriptome library construction using unfractionated total RNA samples.

Conclusions

The Encore NGS Library Systems for Ion Torrent offer a number of advantages for researchers engaged in Next Generation Sequencing:

- Simple, fast, automatable workflow

 Library construction in as little as four hours, with only two bead purification steps
- A complete solution for a range of NGS applications such as genomic DNA sequencing, RNA-Seq, ChIP-Seq or DGE
- Affordable and scalable Optional barcoding capability for multiplex sequencing up to 16 samples to improve sample throughput and reduce sequencing costs
- Seamless integration with NuGEN's Ovation RNA-Seq System

ORDERING INFORMATION

Part No.	Product Name				
0306	Encore [™] NGS Library System <i>for</i> Ion Torrent [™]				
0307	Encore NGS Multiplex Library System I <i>for</i> Ion Torrent				
0308	Encore NGS Multiplex Library System IB <i>for</i> Ion Torrent				
7102	Ovation® RNA-Seq System V2				
7150	Ovation RNA-Seq FFPE System				
9030	Ovation Prokaryotic RNA-Seq System				
Technical Documents					
Encore NGS Library Systems for Ion Torrent User Guide					

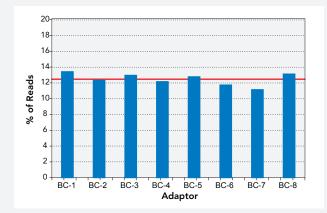


TABLE 1

GC contents of the resulting sequences from E. coli (dh10b), Staphylococcus aureus and Rhodobacter sphaeroides as compared to the actual GC contents of the reference sequences.

	Species	Expected GC Content	Mapped GC Content	% of Library Covered
Sample 1	E. coli dh10b	50.8%	51.2%	100%
Sample 2	E. coli dh10b	50.8%	51.2%	100%
Sample 3	E. coli dh10b	50.8%	51.1%	100%
Sample 4	S. aureus	32.8%	34.1%	100%
Sample 5	S. aureus	32.8%	34.1%	100%
Sample 6	R. sphaeroides	68.5%	67.1%	99%
Sample 7	R. sphaeroides	68.5%	67.8%	100%

Eight sequencing libraries were independently constructed with 100 ng *E. coli* genomic DNA using barcoded adaptors in the Encore NGS Multiplex Library System I for Ion Torrent. The libraries were then mixed based on the mass determined by the Agilent Bioanalyzer High Sensitivity DNA Chip. The results indicate an even distribution of reads derived from libraries containing each barcode with no biased presentation from any of the barcoded libraries. The theoretical distribution of barcoded reads for an 8-plex run is 12.5% as indicated by the red line.

NuGEN Technologies, Inc.

Headquarters USA

201 Industrial Road, Suite 310 San Carlos, CA 94070 USA Toll Free Tel: 888.654.6544 Toll Free Fax: 888.296.6544 custserv@nugeninc.com techserv@nugeninc.com

Europe

P.O. Box 149 6680 AC Bemmel The Netherlands Tel: +31-13-5780215 Fax: +31-13-5780216 europe@nugeninc.com

For our international distributors contact information, visit our website

www.nugeninc.com

©2011 NuGEN Technologies Inc. All rights reserved. The Ovation® and Applause[™] families of products and methods are covered by U.S. Patent Nos. 6,692,918, 6,251,639, 6,946,251 and 7,354,717, and other issued and pending patents in the U.S. and other countries. NuGEN, the NuGEN logo, Ovation, SPIA, Ribo-SPIA, WT-Ovation, Encore, Applause, Prelude and Imagine More From Less are trademarks or registered trademarks of NuGEN Technologies, Inc. Other marks appearing in these materials are marks of their respective owners.

For research use only.